Effects of anisotropy on pattern formation in wetland ecosystems

نویسندگان

  • Yiwei Cheng
  • Marc Stieglitz
  • Greg Turk
  • Victor Engel
چکیده

[1] Wetland ecosystems are often characterized by distinct vegetation patterns. Various mechanisms have been proposed to explain the formation of these patterns; including spatially variable peat accumulation and water ponding. Recently, short‐range facilitation and long‐range competition for resources (a.k.a scale dependent feedback) has been proposed as a possible mechanism for pattern formation in wetland ecosystems. We modify an existing, spatially explicit, advection‐reaction‐diffusion model to include for a regional hydraulic gradient and effective anisotropy in hydraulic conductivity. This effective anisotropic hydraulic conductivity implicitly represents the effect of ponding: a reduction in the long‐range inhibition of vegetation growth in the direction perpendicular to the prevailing hydraulic gradient. We demonstrate that by accounting for effective anisotropy in a simple modeling framework that encompasses only a scale dependent feedback between biomass and nutrient flow, we can reproduce the various vegetation patterns observed in wetland ecosystems: maze, and vegetation bands both perpendicular and parallel to prevailing flow directions. We examine the behavior of this model over a range of plant transpiration rates and regional hydraulic gradients. Results show that by accounting for the effective x‐y anisotropy that results from biomass‐water interaction (i.e., ponding) we can better understand the mechanisms that drive ecosystem patterning. Citation: Cheng, Y., M. Stieglitz, G. Turk, and V. Engel (2011), Effects of anisotropy on pattern formation in wetland ecosystems, Geophys. Res. Lett., 38, L04402, doi:10.1029/2010GL046091.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Habitat suitability modeling of water birds and waders in Hamun wetland by by Maximum Entropy model

Climate change and human activities have increased negative pressure on natural ecosystems. Wetlands are such ecosystems that widely affected by these negative changes. Birds as a part of wildlife in a wetland have damaged by destruction of wetlands, so, a large group of them, are at risk of extinction. Habitat destruction in wetlands in arid and semi-arid areas has more negative effects on the...

متن کامل

A review of the biological characteristics of suckermouth catfish (Hypostomus plecostomus Linnaeus, 1758) and its impacts on aquatic ecosystems

Following the report of suckermouth catfish (Hypostomus plecostomus) from Anzali Wetland, the present study was conducted to review the biological and ecological characteristics of this species and its effects on aquatic ecosystems. A literature review revealed that the suckermouth catfish is native to South America and one of the most popular species in the ornamental fish industry. This speci...

متن کامل

Effects of nutrients on the primary production and determination of the restricting factors in primary production in the international wetland of Choghakhor (Iran)

Limitations in nutrients and physicochemical parameters play a key role in aquatic ecosystems. The present study aimed to determine the influential physicochemical factors in the chlorophyll-a content for wetland management by identifying the restricting factors in primary production. Sampling was conducted during March 2017-February 2018. Factors such as water salinity, temperature, pH, nitrat...

متن کامل

Environmental Management of Oil Pipelines Risks in the Wetland Areas by Delphi and MCDM Techniques: Case of Shadegan International Wetland, Iran

The aim of this study is to assess the risk factors of pipelines and prioritize their severity in order to prevent their effects in Shadegan International wetland, Iran. Due to the participatory nature of the managerial affairs, the study employs an integrated approach that combines Analytic Hierarchy Process (AHP) and Delphi Method. Also, Likret Scale has been applied to quantify the qualitati...

متن کامل

Environmental Management of Oil Pipelines Risks in the Wetland Areas by Delphi and MCDM Techniques: Case of Shadegan International Wetland, Iran

The aim of this study is to assess the risk factors of pipelines and prioritize their severity in order to prevent their effects in Shadegan International wetland, Iran. Due to the participatory nature of the managerial affairs, the study employs an integrated approach that combines Analytic Hierarchy Process (AHP) and Delphi Method. Also, Likret Scale has been applied to quantify the qualitati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011